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Abstract. The climatic variables in protected agriculture are essential factors for 
the plant growth and, in general, of the entire crop. A good forecast of variables 
such as the internal temperature could help farmers to prevent losses in the 
harvest. In the present paper, the temperature forecast inside a greenhouse is 
obtained by implementing Deep Learning tools. The topology used for the 
temperature forecast was Recurrent Neural Networks (RNN) with Long-Short 
Term Memory (LSTM) algorithm. It is a type of neural network known to be 
suitable for processing time-series data. The analysis is performed with the many 
to one configuration for three input elements and one output element. The metrics 
used for the data analysis and validation (RMSE, MAE, 𝑅 , and 𝐶eff); it was 
observed that they significantly improve when the internal temperature is 
incorporated as part of the input elements in the combinations for forecasting. 
The results obtained with the RNN-LSTM provide RMSE values less than 0.30 
and 𝑅  greater than 0.90, with a forecast interval of one hour into the future for 
Internal Temperature. It is shown that the LSTM algorithm within the RNN is an 
effective tool for a good forecast in time series, significantly helping the forecast 
of climatic variables in protected agriculture. 

Keywords: RNN-LSTM, temperature prediction, deep learning. 

1 Introduction 

A good of climatic variables is essential for outstanding management in agriculture, 
either in the open air or in greenhouses. Therefore, a correct action that helps the 
observation and reasonable interpretation of the variables is through monitoring [1]. 

In the fourth industrial revolution, digital technology is made from integrating data 
and the connection of resources, creating an efficient and sustainable. 
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It has a presence in the agricultural world by implementing Intelligent components, 
creating interconnection of systems and machines. Its main objective is to have better 
production systems through the adaptability of monitoring and control systems, 
increasing the efficiency of production systems, fundamentally by optimizing energy 
consumption, machinery automatic control, water usage, fertilizers, and phytosanitary 
products, giving rise to what has been called Precision Agriculture [29]. Agriculture 
4.0 uses technologies such as the Internet of Things, Big Data, Artificial Intelligence, 
Embedded Systems, Cloud Computing, Remote Sensing, among others, part 
of Industry 4.0. 

Applications of these technologies can significantly improve the efficiency of 
agricultural activities [24, 25, 26]. Low-cost sensors and actuators can now connect to 
network platforms and upload their data to a remote database where Big Data analysis 
can occur. These network platforms aim to optimize the production efficiency, 
increasing quality, minimizing environmental impacts, and reducing the use of 
resources such as energy, water, and other consumables [27, 28] conducted a survey on 
the application of Big Data to agriculture. 

They have pointed out that Big Data is now used to provide farmers with predictive 
insights in agricultural operations and operational decisions in real-time from 
monitoring by implementing artificial intelligence as a prediction system. Miranda et 
al. [4] mention the great importance of carrying out effective monitoring of the 
climatological variables of interest. In the present investigation, monitoring is carried 
out considering the variables of most significant interest for the study to make an 
efficient prediction of the internal temperature, to anticipate the appearance of possible 
problems in the culture [5]. 

The monitoring carried out in this research is carried out using advanced 
computational tools and since, in present investigations, strategies have been carried 
out through Artificial Intelligence (AI) to detect levels of interest in the behavior of the 
variables, guaranteeing the control and efficiency in crop productivity. [6]. Recurrent 
Neural Networks (RNN) are one of the AI topologies that have been used in recent 
years with acceptable results for the prediction of time series. RNN functions accurately 
as an identifier of trends for data and patterns are suitable for forecasting applications 
such as Deep Learning (DL) [2]. 

Jha et al. [8] show the RNN supplemented with the Long-Short Term Memory 
(LSTM) algorithm as predictors with levels of reliable precision if fed with a significant 
set of variables of interest for the prediction of time series in forecasting models for 
greenhouses. Jung et. al [9] as well as Hongkang et. al [10] propose models based on 
RNN with LSTM (RNN-LSTM) algorithms [11]. Gharghory [11] uses metrics such as 
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient 
of variance to evaluate the prediction precision of an RNN-LSTM model and compare 
it to other models [3]. 

In this study, an approach to forecasting the internal temperature of a greenhouse is 
developed using external and internal climate data captured for a given period by a 
weather station and sensors connected to it. 

Different RNN-LSTM structures configured through hyperparameters of interest 
were trained and tested with collected data. All RNN-LSTM were evaluated with 
metrics suggested in [11] and compared with different forecast approaches to assess the 
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goodness and suitability of this approach for the greenhouse internal 
temperature forecasting. 

The LSTM algorithm has a significant advantage in expanding the memory capacity 
of the neural network. This characteristic leads to keeping a vast set of background data 
as a reference for the forecasting system. Keeping a large amount of data can 
significantly impact the accuracy of the prediction, reducing the RMSE and MAE to 
0.5 and 0.004, respectively [2]. 

2 Related Works 

Numerous investigations have been carried out with the objective of forecasting 
temperature, humidity, solar radiation, and other variables within protected 
environments such as greenhouses. All these are to determine the growth behavior of 
the crop [9]. There are several forecasting models. 

However, in recent years’ predictors based on Artificial Neural Networks have 
gained importance due to the range of tools provided by Machine Learning and the 
structures of algorithms. Dae-Hyun et al. [9] show comparisons between different 
structures considering various learning algorithms for the time series prediction. 
Abdulkarim et al. [11] show the advantage of the RNN, which can feedback the neuron 
output signal to the same neuron in the next time step. 

The metrics usually used to assess LSTM prediction performance are the mean 
square error (MSE), the mean absolute error (MAE), the mean absolute percentage error 
(MAPE), the square root of the mean square error (RMSE), and the Nash-Sutcliffe 
coefficient of efficiency (NSCE) [9, 11]. The LSTM algorithm has a significant 
advantage in expanding the memory capacity of the neural network. This characteristic 
leads to keeping a vast set of background data as a reference for the forecasting system. 
Keeping a large amount of data can significantly impact the accuracy of the prediction, 
reducing the RMSE and MAE to 0.5 and 0.004, respectively [2]. Singh [16] implements 
the RNN-LSTM to work with time series to forecast the Temperature and Relative 
Humidity inside a greenhouse. 

For the temperature model, the metrics implemented for its validation were the 
MAE, RMSE, and 𝑅 , obtaining MAE values of 0.488 for the temperature forecast, 
guaranteeing that the reliability of the forecast is within ±1°C. The RMSE obtained is 
0.865, and the coefficient of determination 𝑅  is 0.953, which indicates that the general 
dispersion is small and does not cause a significant error with the observed temperature. 

The RNN-LSTM training datasets can be selected in two ways. One way can be with 
90% of the data sequence and the remaining 10% for testing and validation of the 
network. The other way is with 80% of the data sequence for training and the remaining 
20% for network testing and validation. All the data must be normalized [3]. 

3 Methodology 

The present research work presents new contributions for forecasting the green-house 
internal temperature using RNN and Deep Learning, using the Long Short-Term 
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Memory (LSTM) algorithm as the one presented by Hochreiter and Schmidhuber in 
1997 [17]. 

The data collection of the climatic variables was carried out inside (Internal 
Temperature and Relative Humidity) and outside (External Relative Humidity, Solar 
Radiation, Outdoor Temperature, Wind Direction, and Wind Speed) a greenhouse 
(Table 1), using a Davis Vantage Pro2 meteorological station (Fig.1). 

The greenhouse has a curved roof (165m2in area, 27.5 m long, 6 m wide) and plastic 
cover. It is traditionally used without any climate control equipment inside and relies 
only on natural ventilation. 

The greenhouse is in the Mezquitera Sur, Juchipila, Zacatecas, Mexico. The data 
collection was carried out from July 12, 2020, to November 6, 2020, with a 5-minute 
sampling time for all the climatic variables of interest. A total of 33,696 samples were 
recorded for training and testing of the RNN-LSTM. 

The RNN-LSTM topology is based on a generalization of the feedforward neural 
network that has internal memory. RNN is recurrent at the neuron level as the neuron 
output is calculated using the current inputs and its previous output. The RNN considers 
the current inputs and the output that it has learned from the before deciding. 

Table 1. Climate Variables considered for this study. 

Nomenclature Climate Variable Units 
Ti Internal Temperature °C 
To External Temperature °C 
Ho External Humidity % 
Hi Internal Humidity % 
Di Dew Point % 
Rs Solar Radiation W/m² 

 

Fig. 1. Davis Vantage Pro 2 Weather Station. 

 

Fig 2. Data flow at time step t, Copyright 2020 by MathWorks Inc. 
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The ADAM algorithm was adopted to make the calculation of the LSTM network 
more efficient. The architecture of the RNN-LSTM is observed in Fig. 2. The behavior 
of the data flow over time t is shown in Table 2. 
where σ is the sigmoid activation function for the entry, forgetting, and exit gates 
respectively, the activation function tanh for the candidate gate, W the vector of 
weights for the entry, forgetting, and exit gates respectively, the function activation 
tanh for the candidate gate, R is the vector of recurring weights for the entry, forgetting, 
candidate and exit gates, ht-1 is the output of the previous cell and b is the bias vector 
for the entry gates, oblivion, candidate and exit respectively. The most important things 
to consider when training and testing Neural Networks containing the LSTM algorithm 
are hyperparameters. These can affect its precision and performance [18, 19, 9, 20]. 

In Table 3, all the hyperparameters to be considered are shown. For this type of 
network, the most important are:  

 Learning rate, 
 Number of units of the hidden layer and, 
 Mini Batch Size [14]. 

The number of units in the hidden layer will influence the adjustment effect. If the 
Mini batch size is too small, the training data will be challenging to converge, leading 
to a mismatch. Many consulted papers start with a high learning rate and lower it as the 
training goes on. We noted that the learning rate is very dependent on the network 
architecture. If the learning rate is too large, the required memory will increase 

Table 2. Components of the data flow over time t. 

Nomenclature Definition Formula 

𝑖  Input Gate 𝑖 = 𝜎(𝑊 𝑥 + 𝑅 ℎ + 𝑏 ) 

𝑓  Forgate Gate 𝑓 = 𝜎 𝑊 𝑥 + 𝑅 ℎ + 𝑏  

𝐶  Cell 
candidate 

𝐶 = tanh 𝑊 𝑥 + 𝑅 ℎ + 𝑏  

𝑂  Ouput Gate 𝑜 = 𝜎(𝑊 𝑥 + 𝑅 ℎ + 𝑏 ) 

Table 3. Hyperparameter settings sets. 

Parameter Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 

Input Size 3 3 3 3 3 3 3 

Number of Rsponses 1 1 1 1 1 1 1 

Hidden Units 2 2 1 1 1 1 1 

Number of Epochs 200 250 300 300 300 350 300 

Mini Batch Size 720 650 620 620 620 800 700 

Gradient Threshold 0.9 0.5 0.6 0.8 0.9 0.6 0.7 

Learning Rate 0.02 0.1 0.001 0.005 0.001 0.002 0.005 

Learn Rate Schedule 150 200 200 125 125 120 200 

Learn Rate drop Factor 0.5 0.2 0.2 0.2 0.2 0.3 0.5 

Number of hiden units 100 200 250 250 300 350 400 
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significantly [11]. The experimental environment consisted of an Intel (R) Core (TM) 
i5-9300H2.40 GHz quad-core processor with a 16 GB memory. The operating system 
was Windows 10 64-bit; the programming was carried out in MATLAB software. 

The various structures were obtained from the hyperparameters variation. Table 3 
shows the different hyperparameter settings used for this work. The criteria for 
evaluating the goodness and suitability of the network based on the fit are shown 
in Table 4 [21]. The MAE is used to reflect prediction errors, and its range is 
[0, +). When the predicted and observed values are identical, the MAE is zero, 
indicating a perfect model. Significant errors lead to high MAE values [22]. 

Other metrics to consider in the analysis to check the goodness of the network are 
the coefficient of determination (𝑅 ) and the Coefficient of efficiency (𝐶eff) that help 
determine the closeness of the predicted data with the observed data. Both coefficients 
range is [0, 1], [9, 21]. The number of combinations made was obtained from five 
variables of interest; the internal temperature was excluded, in arrays of 3 input 
elements through formula 1: 

𝐶 =
𝑛!

(𝑛 − 𝑟)! 𝑟!
 , (1) 

where: 
𝑛 = Total climatic variables considered. 
𝑟 = Number of variables considered for each arrangement. 
From this, a total of 10 combinations were obtained to perform the tests with the 

RNN-LSTM. The metrics analyzed were the Mean Square Error (RMSE), the Absolute 
Mean Error (MAE) [3], and the Determination Coefficient (𝑅 ) [23]. 

Later, seeking to improve the prediction results for the internal temperature (𝑇 ), the 
five inputs combinations with best RMSE and 𝐶eff were selected, and one input variable 
in each combination was substituted with the internal temperature, generating new 
input combinations. 

The RNN-LSTM was trained and tested with the 80-20 arrangement, 80%training 
data, and 20% test data. The metrics analyzed were the Mean Square Error (RMSE), 
the Absolute Mean Error (MAE) [3], and the Determination Coefficient (𝑅 ) [23]. 

4 Results 

The best results for the RNN-LSTM training and testing were achieved with the 
hyperparameters set shown in column Value 4 of Table 3. These results were validated 
using the metrics shown in Table 5 and Table 6. The RMSE values shown in Table 5 
have a range from 0.30027 to 5.5629.Fig. 3a, shows the forecast vs. actual value of an 

Table 4. Metrics for the evaluation of the efficiency of the RNN-LSTM. 

Evaluation RMSE C  
Very Good ≤ 0.30 ≥ 0.91 

Good 0.30-0.40 0.84 - 0.91 
Acceptable 0.40-0.50 0.75 - 0.84 

No Acceptable > 0.50 < 0.75 
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RNN-LSTM with 0.3 RMSE, while Fig. 3b, shows the forecast vs. actual value of an 
RNN-LSTM with 5.5629RMSE. As for the MAE values from 0.0095 to 0.32. For 
theR2coefficient, the range of values was 0.7856 to 0.9994, and 𝐶eff values from 0.9994 
to 0.7970. Subsequently, a new training pattern for the RNN-LSTM using the internal 
temperature (𝑇 ) within the input sequence as shown in the following Table 6 was tried 
out. The results obtained had RMSE values from 0.14931 to 0.2507, MAE values from 
0.00407 to 0.0127, and 𝑅 up to 0.9998, and 𝐶eff under to 0.2507, which presents a solid 
test forecast relationship. 

Table 5. Sequence of input-output variables (Many to one). 

Input Secuence RMSE  MAE R2 𝐂𝐞𝐟𝐟

Hi-Id-Rs 0.3003  0.0095 0.9994 0.9994
Hi-Id-To 0.3128  0.0123 0.9993 0.9993

Hi-Id-Ho 0.3966  0.0099 0.9989 0.9989
Id-Rs-Ho 1.4368  0.0471 0.9857 0.9863
Hi-Ho-To 1.8531  0.0451 0.9762 0.9800
Id-Ho-To 3.3477  0.0721 0.9223 0.9457
Hi-To-Rs 3.4352  0.0783 0.9182 0.9420

Id-Rs-To 4.2746  0.0730 0.8734 0.8172

Ho-To-Rs 5.3143  0.0853 0.8043 0.8416
Hi-Rs-Ho 5.5629  0.3228 0.7856 0.7970

Table 6. Comparison of data obtained in the different training sequences (Many to one). 

Input Secuence RMSE MAE R2 𝐂𝐞𝐟𝐟 
Hi-Id-Ti 0.1493 0.00407 0.9998 0.9998 

Ho-To-Ti 0.1876 0.0077 0.9998 0.9998 

Hi-Ti-To 0.2081 0.0075 0.9997 0.9997 
Hi-Ho-Ti 0.2118 0.0059 0.9997 0.9997 

Id-Rs-Ti 0.2507 0.0127 0.9996 0.9996 

 

(a) 

 

(b) 

Fig. 3. Behavior curves of the temperature forecast first sequence of input variables. 
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The forecast graphs (Fig. 4a and Fig. 4b) show the similarities and slight differences 
between forecast and actual values. The prediction model makes forecasts very close 
to the observed values. From the metrics obtained, it was observed that the five 
sequences that contain 𝑇  yielded good forecast results of the greenhouse internal 
temperature. In Table 7 a comparison of statistical metrics between this work and others 
found in the literature for the same application is shown. 

5 Conclusions 

The obtained results show that the combination of RNN-LSTM algorithms and a good 
selection of input variables can yield outstanding forecasting results. Metrics values 
such as RMSE = 0.1493 and 𝐶 = 0.9998 were obtained, which are considered by the 
literature as very good for the behavior of the RNN with LSTM algorithm. It is also 
observed that the predicted values and the observed values are very close. 

This is corroborated by the values of the coefficient of determination 𝑅  with results 
of 0.9998, and the MAE = 0.00407. These metrics values were achieved thanks to the 

Table 7. Comparison of parameters obtained. 

Implemented model RMSE MAE 𝑹𝟐 𝑪𝒆𝒇𝒇 

Hi-Id-Ti 0.1493 0.00407 0.9998 0.9998 

Ho-To-Ti 0.1876 0.0077 0.9998 0.9998 

Hi-Ti-To 0.2081 0.0075 0.9997 0.9997 

Hi-Ho-Ti 0.2118 0.0059 0.9997 0.9997 

Id-Rs-Ti 0.2507 0.0127 0.9996 0.9996 

[32] (RNN) 1.7963 1.3431 – – 

[32] (LSTM) 1.8044 1.3521 – – 

[32] (EEMD-LSTM) 0.7098 0.5336 – – 

[33] (RNN) 0.865 0.488 0.953 – 

[31] (MLP-BPP) 0.711 0.558 0.980 – 

[30] (CFD) 2.3518 2.0312 – – 

 

(a) 

 

(b) 

Fig. 4. Behavior curves of the temperature forecast, second sequence of input variables. 
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relationship that exists between the internal dew (Id), internal relative humidity (Hi), 
and the internal temperature (Ti)variables in the greenhouse. 

The applied model of RNN-LSTM has proven to be a tool that generates a clear 
interpretation of the training data. With a somewhat limited amount of data of 33,696, 
80% of the data was enough to provide a model with excellent metrics when forecasting 
the greenhouse’s internal temperature. 

Future work is considered to make other prediction models using alternative ANN 
topologies such as Convolutional Neural Networks with Long-Short Term Memory 
algorithm (CNN-LSTM) and Support Vector Regression (SVR). This work will allow 
a fair comparison for these topologies when they are applied to this application. 
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